BRIDGE ENGINEERING INA HIGHWAY RESEARCH BOARD

Research and Technology Bureau

Workbook

LRFD Workshop on Bridge Foundations Consisting of Driven Piles in Iowa

October 30, 2012

lowa Department of Transportation

LRFD Workshop on Bridge Foundations Consisting of Driven Piles in Iowa

East/West Materials Conference Room, Iowa DOT, Ames Date: October 30, 2012; repeated on Oct. 31, 2012

Agenda

	Registration
8:30 am to 9:00 am	Registration
	Morning Session
9:00 am to 9:20 am	Opening Remarks: Sri Sritharan (Iowa State University) and Ken Dunker (Iowa DOT)
9:20 am to 9:50 am	PILOT Database and Field Testing of Piles: Sri Sritharan (Iowa State University)
9:50 am to 10:20 am	LRFD Calibration Process: Kam Ng (Iowa State University)
10:20 am to 10:30 am	Break
10:30 am to 11:00 am	Construction Control (Modified Iowa ENR and WEAP Analysis) Kam Ng (Iowa State University)
11:00 am to 11:30 am	Development of Design Guide: Don Green (Baker)
11:30 am to 12:30 pm	Track 2 and Example: Design and Construction Stages Kam Ng (Iowa State University)
	Afternoon Session
12:30 pm to 1:30 pm	Lunch Break
1:30 pm to 2:30 pm	Track 1 and Example: Design Stage Don Green (Baker)
2:30 pm to 2:50 pm	Track 1 and Example: Construction Stage Don Green (Baker)
2:50 pm to 3:00 pm	Comparison between Track 1 and Track 2 Kam Ng (Iowa State University)
3:00 pm to 3:15 pm	Break
3:15 pm to 3:30 pm	Track 3 and Examples Kam Ng (Iowa State University)
3:30 pm to 3:45 pm	Other Pile Types: Ken Dunker (Iowa DOT)
3:45 pm to 4:15 pm	Design using spreadsheet Michael Nop (Iowa DOT)
4:15 pm to 4:30 pm	Feedback and Discussion Sri Sritharan (Iowa State University)

Overview - 1

- Pile design has three aspects:
 - Structural
 - Geotechnical
 - Driving target
- The Bridge Design Manual has structural simplifications for typical design cases.
 - Integral abutments
 - Pile bents
 - Lateral loads
 - Scour below pier foundations

Iowa Department of Transportation Office of Bridges & Structures

Overview - 2

- ISU research focused on geotechnical and driving target aspects of design.
 - Database of Iowa DOT pile tests
 - Field testing
 - Statistical calibration
 - Design guidelines
 - Contract length related to construction control and soil classification
 - Driving target related to construction control and soil classification

-			
-			

Overview - 5

- Anomalies in new policy are being resolved.
- Special provision may be required (to explain larger driving targets).
- Standards may require modification until they are revised.
- Office/consultant policies are changing check with the office for specific projects.

Implementation - 1 In-house design for new bridges to be let after 1 October 2012

- Consultant and county training on 30 & 31 October 2012
- Future dates...next slide...

Implementation - 2

- Updated Bridge Design Manual and Revised Vol. IV Examples in January 2013
- Release of updated H-, J-, and RSstandards in April 2013
- Consultant design for new bridges to be let in July 2013
- Proposed sunset of Iowa DOT ENR Formulas in 2017

Acknowledgements

- 1) Iowa Highway Research Board
- 2) Research and Technology Bureau
- 3) Technical Advisory Committee: Ken Dunker; Gary Novey; Ahmad Abu-Hawash; Michael Nop; Dean Bierwagen; Bob Stanley; Steve Megivern; Kyle Frame; Curtis Monk; John Rasmussen; and Lyle Brehm
- 4) Several Contractors
- 5) GSI and Team Services
- 6) Kyle Frame, Ken Dunker, Michael Nop and Ahmad Abu-Hawash from Iowa DOT

Iowa Department of Transportation Office of Bridges & Structures

- 1) Scope and research objectives
- 2) National and local survey
- 3) PILOT database
- 4) Full-scale field testing of piles
- 5) Pile setup quantification

Research Scope

- 1) Perform literature review
- 2) Conduct national and local surveys
- 3) Develop a user-friendly electronic PIle LOad Test (PILOT) database
- 4) Conduct 10 full-scale field tests
- 5) Data collection and analysis
- 6) Calibrate LRFD resistance factors
- 7) Recommend LRFD pile design and construction procedures

Iowa Department of Transportation Office of Bridges & Structures

Research Objective-1

- 1) Examine the current pile design and construction procedures in Iowa
- 2) Recommend changes and improvements that are consistent with available pile load test data and LRFD bridge design practice
- 3) Install and load test piles in the field
- 4) Collect complete data
- 5) Improve design of piles in accordance with LRFD

Iowa Department of Transportation Office of Bridges & Structures

Research Objective-2

- 6) Develop regionally-calibrated LRFD resistance factors for bridge pile foundations in Iowa
- 7) Disseminate research outcomes

Research Reports

- Volume I PILOT Database
- Volume II Field Testing of Piles
- Volume III LRFD Calibration
- Volume IV Design Guide and Examples

Office of Brid	porta pes & Sti	ructures									LO	cal Su	V1.
Lum Long.HR 105791242	00011 105510	VGS UCTS-P	8mmi 1/2,474.0 (2,524.14		Vinetage	Varh	U evel	Towned	Laca 13			ompliete Survey Responses	
)~	-	0ey 10753 NG 18.10-42	Read -	10mm	****	Cere Core LG 5 VG HP, 1042	Red	01048	19.00	14, 15.42 On the		complete Survey Responses	
8,004 107541,40,107	0 erden 1,050,149, 10-42	Durs Via VGLUDG RDI, Hig IE	Pastoria VGHR 15429 1953	Humbook	7444 VG804 14507 10-01-17	Refer VG&LG HR 10-42	2.64	14.42 5.42	10-42	18,1087	5		
1000L44 1070L44 81-102.4	1.	1 **	00000 110 100	Vidor VIG82,41 10-42 10-57,97 12-62	1	1	`	10-42	LG 32, H	1000		L	
i Live		2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		· [·	-	240 2 5 2 5 2	9 7 9 1 1 10 - 0	•••					_
	Amore Calies	longarer Per			0 41	50 1940	Ibros Agoreson Long N. P. A Spe	Viagetis LCPG.HP, 10-42 Qava	a'ann	FREE FREE	A=Alu L= Loes WG=W LG= Lo LOTG= HP = Se D = Tim	vium Soll Formation Is Soll Formation Visconsin Gladial Soll Formation any Gladial Soll Formation Loesson top of Gladial Soll Fo sel H-Piles here Piles here Piles	n rmation
Each county th 1) Typical soil & 2) Average dep 3) Most freque 4) Commonly u	at provid primation thito bed ntly used sed pile s	<u>led a com s</u> s(see Map hock pile type) ice(s) for t	slete survi Keγ) s) (see Ma he most fr	p Keyl equency	se contair used pile 1	s the folk	owinginto	mation[f availabl		SO:	renesa uarran en di Piles Preca si, Prestressed Concretei	Ne.

	Iow of 1 Office	a Depart ransport of Bridges & St	ment ation tructures		Dat	a Co	olle	ctic	on-P	ILO	Т
Data	ibase fi	or Plle	L'Dad Ti	ests in Iowa	(PILOT) Research	arch and hology I		BRIDGE		ERSITY
1D +	County ·	Township ·	Lab Number •	Project Number •	Design Num •	Contractor ·	Pile Type	Design Load	- Date Driven -	Date Tested •	Test Site Sol
1	Black Hawk	Orange	AXP3-7	IY-520-6(8)3P-07	1983	Lunda Construc	HP 10 X 42	32	12/9/1983	12/20/1983	Mixed
2	Johnson	Clear Creek	AXP3-9	1-380-6(44)24301-52		A. M. Cohron &	HP 10 X 42	34	6/15/1973	6/20/1973	
3	Fremont		AXP3-10	FN-184-1(3)21-36	173	A. M. Cohron &	HP 10 X 42	37	7/24/1973	7/26/1973	Mixed
4	Jones		AXP3-14	FM-38-3(7)21-53	170	Grimshaw Con:	HP 10 X 42	37	8/21/1973	8/23/1973	Mixed
5	Jasper	Malaka	AXP4-2	BROS-9050(2)8J-50	383	Herberger Con	HP 10 X 42	31	5/23/1984	5/30/1984	Clay
6	Decatur	Center	AXP4-3	BRF-2-5(10)38-27	1082	Godberson - Sr	HP 10 X 42	35	6/18/1984	6/21/1984	Clay
7	Cherokee	Afton	AXP4-6	8RF-3-2(20)38-18	683	Christensen Br	HP 10 X 42	35	11/21/1984	11/27/1984	Mixed
8	Linn	Rapids	AXP4-22	I-IG-380-6(57)25904-57	1672	Schmidt Constr	HP 10 X 42	37	8/7/1974	8/15/1974	Mixed
9	Linn	Rapids	AXP4-23	1-1G-380-6(57)25904-57	1672	Schmidt Constr	HP 10 X 42	37	11/14/1974	11/19/1974	Mixed
10	Ida	Garfield	AXP5-1	8RF-175-3(15)38-47	383	Christensen Br	HP 10 X 42	36	6/18/1985	6/20/1985	Mixed
11	Hamilton	Liberty	AXP5-2	DP-F-520-4(9)39-40	1670	Christensen Br	HP 10 X 42	37	4/17/1975	4/22/1975	Clay
12	Linn	Clinton	AXP5-3	F-30-7(62)20-57	1781	Schmidt Constr	HP 10 X 42	37	9/13/1985	9/18/1985	Clay
13	Delaware	Richland	AXP6-2	SP-603-0(3)76-28	276	Grimshaw Con:	HP 10 X 42	37	3/11/1976	3/16/1976	Sand
14	Audubon	Hamlin	AXP6-3	FN-44-3(15)21-05	176	Capital Constru	HP 10 X 42	37	5/28/1976	6/3/1976	Mixed
15	Cherokee	Cedar	AXP6-3	BRF-59-7(24)-3818	1183	Christensen Br	HP 10 X 42	36	5/19/1986	5/28/1986	Clay
16	Osceola	Ocheyedon	AXP6-4	SN-720(7)51-72	176	Koolker Inc.	HP 10 X 42	30	6/10/1976	6/15/1976	Mixed
17	Fremont	Benton	AXP6-6	BRF-2-1(21)38-36	184	Godberson - Sr	HP 10 X 42	36	9/20/1986	9/25/1986	Sand
18	Muscatine	Pike	AXP6-7	BRF-22-4(30)38-70	284	United Contrac	HP 10 X 42	37	10/8/1986	10/15/1986	Sand
19	Marion	Clay	AXP6-8	BRF-592-2(12)38-63	373	Grimshaw Con:	HP 10 X 42	37	10/7/1976	10/12/1976	Sand
20	Muscatine	Pike	AXP6-8	BRF-22-4(30)38-70	284	United Contrac	HP 10 X 42	37	10/17/1986	10/22/1986	Sand
21	Harrison	Little Sioux	AXP6-9	1-29-5(8)97	463	Hobe Engineer	HP 10 X 42	32	2/9/1966	2/17/1966	Sand
22	Dallas	Boone	AXP6-15	1-80-3(15)113	1065	Al Munson	HP 10 X 42	55	3/15/1966	3/18/1966	Clay
23	Harrison	Little Sloux	AXP6-16	1-29-5(8)97	363	Jensen Constru	HP 10 X 42	37	3/14/1966	3/22/1966	Sand
24	Harrison	St. John	AXP6-22	1-1G-29-5(7)78	265	Sioux Falls Con	HP 10 X 42	37	7/18/1966	7/27/1966	Sand
25	Harrison	Taylor	AXP6-28	1-1G-29-5(7)7843-9	1065	Capital Constru	HP 10 X 42	37	10/24/1966	10/28/1966	Sand

Confidence	Anticipated Errors for R_t (%)						
Level	Construction Co	ontrol Method for R _{EOD}					
(%)	CAPWAP	WEAP-Iowa Blue Book					
80	-4% to 2.8%	-12.2% to -1.8%					
90 (Pile Group)	-4.9% to 3.8%	-13.9% to -0.5%					
98 (Single Pile)	-7% to 5.3%	-17.2% to 1.9%					

- 1) LRFD calibration process
- 2) Integration of pile setup into LRFD
- 3) Construction control consideration
- 4) Resistance factors for design and construction

Order of Drives Department Office of Define A Structures

- Design Stage (For Contract Length):
 Iowa Blue Book [BDM 6.2.7]
- 2) Construction Stage:
 □ Iowa DOT Modified ENR Formula
 □ WEAP [Iowa Blue Book for Unit Soil Resistance]
 □ PDA/CAPWAP
 □ Static Load Test

Iowa Department of Transportation Office of Bridges & Structures	Cons	struction	n Con	trol A	nalys
Fo minimiz Fom desig	ze discre n and co	pancy in p nstruction	ile capac stages	ity obtai	ned
Construction Control Method	Soil Profile	Condition	Original φ for Iowa Blue Book	Revised φ for Iowa Blue Book	% Gain
WEAP	Clay	EOD+setup	0.63	0.63	0%
	Mixed	EOD	0.60	0.64	7%
	Sand	EOD	0.55	0.55	0%
	Class	EOD+setup	0.63	0.68	8%
	Ciay	BOR	0.63	0.80	27%
CLENNAR	NC 1	EOD	0.60	0.80	33%
CAPWAP	Mixed	BOR	0.60	0.71	18%
	a 1	EOD	0.55	0.69	25%
	Sand	BOR	0.55	0.58	6%
	Clay	EOD	0.63	0.63	0%
Iowa DOT	Mixed	EOD	0.60	0.70	17%
ENR Formula	Sand	EOD	0.55	0.55	0%

		Const (Field	nstruction Control Field Verification) Resistance Factor (φ) for β=2					β=2.33		
Theo.	Dri Criter	iving ia Basis	PDA/	Restrike	Static		Cohesiv	re	Mixed	Non- cohesive
Analysis	Iowa DOT ENR	WEAP	CAP WAP	Test after EOD	Load Test	φ	$\phi_{\rm EOD}$	ϕ_{setup}	φ	φ
	Yes	-	-	-	-	0.60	-	-	0.60	0.50
Iowa			1	-	-	0.65	-		0.65	0.55
Blue	No	Vec	Vec	-	-	0.70	-	-	0.70	0.60
Book	140	105	105	Yes	-	0.80	-	-	0.70	0.00
			-	-	Yes	0.80	-	-	0.80	0.80

		Const (Fiel	ruction d Verifi	control		Re	sistance	e Facto	r (q) for	β=2.33
Theo.	Dr Criter	iving ia Basis	PDA/	Restrike	Static		Cohesiv	e	Mixed	Non- cohesive
Analysis	Iowa DOT ENR	WEAP	CAP WAP	Test after EOD	Load Test	φ	ϕ_{EOD}	ϕ_{setup}	φ	φ
	Yes	-	-	-	-	0.45	-	-	0.45	0.40
Iowa			-	-	-	0.50	-	-	0.50	0.40
Blue	Ma	Vaa	Vaa	-	-	0.55	-	-	0.55	0.45
Book	INO	res	res	Yes	-	0.60	-	-	0.55	0.45
			-	-	Yes	0.80	-	-	0.80	0.80

		Constr (Field	ruction 1 Verifi	control		Re	sistance	e Factor	r (φ) for	β=2.33
Theo.	Dri Criteri	ving ia Basis	PDA/	Restrike	Static		Cohesiv	e	Mixed	Non- cohesive
Analysis	Iowa DOT ENR	WEAP	CAP WAP	Test after EOD	Pile Load Test	φ	$\phi_{\rm EOD}$	ϕ_{setup}	φ	φ
	Yes	-	-	-	-	0.55	-	-	0.55	0.50
Iowa		No Yes	-	- Yes	-	- 0.70	0.65	0.20	0.65	0.55
Blue Book	No		Yes	- Yes	-	- 0.80	0.75	0.40	0.70	0.70
			-	-	Yes	0.80	-	-	0.80	0.80

- A. Recognize the changes in the Modified Iowa ENR formula from Interim LRFD to LRFD.
- B. Recognize the changes in the WEAP analysis from Interim LRFD to LRFD.
- C. Learn the step by step LRFD procedure of the WEAP analysis

lowa Department of Transportation Office d Biologu & Strentures	Iodified Iowa ENR
Interim LRFD	LRFD
For gravity hammer	rs with concrete piles
 Bearing value (P) P = 4.5WH/S+0.2 × W/W+M (English) P = 3.7WH/S+5.1 × W/W+M (Metric) 	 Nominal bearing resistance (R_n) R_n = ^{18WH}/_{5+0.2} × ^W/_{W+M} (English) R_n = ^{14.8WH}/_{5+5.1} × ^W/_{W+M} (Metric)
W = weight of the grav H = height of free M = weight of the pile plu S = average penetration in inches (mm)	vity hammer in tons (kg) fall in feet (meters) s weight of cap in tons (kg) of the pile per blow for the last 5 blows

Iowa Department of Transportation Office of Bridges & Structures	WEAP
Interim LRFD	LRFD
 Bearing capacity Bearing graph with safety factor of 2.2 Pile is accepted if the measured driving resistance ≥ the plan design bearing No driveability analysis Use SPT N-value Variable soil parameters 	 Nominal bearing resistance (R_n) Bearing graph in terms of nominal resistance Pile is accepted if the nominal measured driving resistance ≥ the target nominal driving resistance No driveability analysis except SRL-3 Use unit resistance from modified Iowa Design Charts

	LF	RED R	eport Volume II	(Ng et al. 2010)	
Table 4.17. B	tevised Io	wa pile de	sign chart used in WEA	P for friction bearing Grad	e 50 steel H-piles
SOIL DESCRIPTION	SPT N	VALUE	ESTIMATED NOMINAL R	SISTANCE VALUES FOR FRICT FOOT (KSF)	ION PILE IN KIPS PER SQUAR
Alluvium or Loss	MEAN	RANGE	HP 10	HP 12	HP 14
Very soft gifty clay	1	0 - 1	0.12	0.20	0.17
Soft silty clay	3	2-4	0.24	0.30	0.26
Stiff silty clay	6	4 - 8	0.36	0.40	0.43
Firm alty clay	11	7 - 15	0.60	0.60	0.60
Stiff silt	6	3 - 7	0.36	0.40	0.34
Stiff sandy silt	6	4 - 8	0.36	0.40	0.34
Stiff sandy clay	6	4 - 8	0.36	0.40	0.43
Silty sand	8	3 - 13	0.25	0.21	0.23
Clavey sand	13	6 - 20	0.33	0.34	0.40
Fine sand	15	8 - 22	0.41	0.41	0.40
Coarse sand	20	12 - 28	0.58	0.55	0.52
Gravely sand	21	11 - 31	0.58	0.55	0.52
Granular material	> 40		0.83	0.82	0.80
Glacial Clay	MEAN	RANGE	HP 10	HP 12	HP 14
Firm silty glacial clay	11	7 - 15	0.72	0.70	0.69
Firm clay (gumbetil)	12	9-15	0.72	0.70	0.69
Firm glacial clay ⁽³⁾	11	7 - 15	0.84 [0.96]	0.80 [1.00]	0.77 [0.94]
Firm sandy glacial clay ⁽¹⁾	13	9 - 15	0.84 [0.96]	0.80 [1.00]	0.77 [0.94]
Firm-very firm glacial clay ⁽³⁾	14	11 - 17	0.84 [1.20]	0.80 [1.20]	0.77 [1.20]
Very firm glacial clay ⁽²⁾	24	17 - 30	0.84 [1.20]	0.80 [1.20]	0.77 [1.20]
Very firm sandy glacial clay ⁽³⁾	25	15 - 30	0.84 [1.20]	0.80 [1.20]	0.77 [1.20]
Cohesine or elacial material(I)	> 15		0.84	0.80	0.77

		LRFI) Report Volume I	I (Ng et al. 2010)			
Lable	4.18. Ke	LRFD DRIV	EN PILE FOUNDATION GEOT	EAP for end bearing Grad ECHNICAL RESISTANCE CHAR	e 50 steel H-piles F, ENGLISH UNITS		
SOIL	SPT N	-VALUE	ESTIMATED NOMINAL	RESISTANCE VALUES FOR EN	D BEARING PILE IN KIPS		
DESCRIPTION	MEAN	RANGE	HP 10	HP 12	HP 14		
Granular material	< 15						
Fine or medium sand	15		Do not consider end bearing				
Coarse sand	20						
Gravely sand	21						
	25						
		25 - 50	24.8-49.6	31-62	42.8-85.6		
Granular material		50 - 100	49.6-99.2	62-124	\$5.6-171.2		
		100 - 300	99.2-198.4	124-248	171.2-385.2		
		> 300	223.2	279	385.2		
Rednask		100 - 200	148.8	186	256.8		
DEGEVCK		> 200	223.2	279	385.2		
	12	10 - 50		Do not consider end bearing			
	20		12.4	15.5	21.4		
Cohesive material	25		24.8	31	42.8		
	50		49.6	62	\$5.6		
	100		\$6.8	108.5	149.8		

Iowa Dep of Transp Office of Bridge	artment iortation s & Structures		S	oil Pa	rameters
_	LRFD Report	Volume II (N	ig et al. 20	10)	
	Table 4.19. WEAP recommendation	nded soil quake val e e)	ues (Pile Dyna Shaft Quake (in)	mics, Inc., 2005) Toe Quake	
	All soil types, soft rock (Nor	-displacement piles)	0.10	0.10	
	Very dense or ha (Displacement piles of displacement piles of displacement piles of displacement piles of displacement piles of the pil	ard soils meter or width D)	0.10	D/120	
	Dimber of dia	soils mater or width D)	0.10	D 60	
	Hard rock (All p	Hard rock (All pile types)			
	Table 4.20. WEAP recommended Iowa Blue J Soil Types	20. WEAP recommended Smith's damping to Iowa Blue Book (Pile Dynamic Soil Types Damping Factor (vft)			nd
I	Non-cohesive soils	0.05	0.15		
I	Cohesive soils	0.20	0.15		
ī					
Interim LRFD →	Table 4.21. Dampi Soil Types Reck Boulder & Gravel of G Meduus Saud or Fin Packed Saud Site Check Sine Check Check D	ng factors used in th avel Sand e Sand	te Iowa DOT to Shaft Dam Factor (s) 0.05 0.10 0.10 0.10 0.15 0.12	Inequal Tool Damping Tool Damping (b) Factor (wft) 0.05 0.05 0.05 0.10 0.05 0.12 0.12 0.12	
Interim LRFD →	Table 4,21. Dampi Soll Type Rock Boolde & Grewt or Gr Medum Sand or Fin Packel Sand Salty Clay, Salty Clay, Salty Clay or F	ng factors used in th avel Sand e Sand firm Sandy Glacial Clay	te Iowa DOT r Shaft Dam Factor (s) 0.05 0.10 0.10 0.10 0.15 0.12 0.15	Tee Damping (b) Tee Damping Factor (xft) 0.05 0.05 0.05 0.10 0.05 0.12	

Seven Department Office office A wave

- 1) New LRFD procedure for bridge foundations consisting of driven piles in Iowa
- 2) Three track examples cover various pile types, soil profiles and special design considerations
- Geotechnical design of pile foundations using Iowa Blue Book
- 4) Establish pile driving criteria using WEAP, Iowa ENR formula and PDA/CAPWAP

Danian F	
Step 1	Develop bridge situation plan (or TS&L. Type, Size, and Location) ⁽¹⁾
	Develop soils package, including soil borings and foundation
Step 2	recommendations (1)
Step 3	Determine pile arrangement, pile loads, and other design requirements (1)
Step 4	Estimate the nominal geotechnical resistance per foot of pile embedment (2)
	Select resistance factor(s) to estimate pile length based on the soil profile
Step 5	and construction control (2)
Step 6	Calculate the required nominal pile resistance, Rn(2)
Step 7	Estimate contract pile length, L (2)
Step 8	Estimate target nominal pile driving resistance, Rndr.T (2)
Step 9	Prepare CADD note for bridge plans
Step 10	Check the design (3)
Construc	tion Step
Step 11	Prepare bearing graph
Stop 12	Observe construction, record driven resistance, and resolve any
Step 12	construction issues

						Construct	tion Controls
Track Number	Pile Type	Example Number	Substructure Type	Soil Type	Special Consider- ations	Driving Criteria Basis	Planned Retap 3 Days after EOD
		1	Integral Abutment	Cohesive			
		2	Pier	Mixed	Scour	3 Wave Equation	No
	H-Pile	3	Integral Abutment	Cohesive	Downdrag		
1		4	Pier	Non-Cohesive	Uplift		
		5	Integral Abutment	Cohesive	End Bearing in Bedrock		
	Pipe Pile	6	Pile Bent	Non-Cohesive	Scour		
	Prestressed Concrete Pile	7	Pile Bent	Non-Cohesive	Scour		
	H-Pile	1	Integral Abutment	Cohesive		Modified Iowa	
2	Timber	2	Integral Abutment	Non-Cohesive		DOT Formula	
3	H-Pile	1	Integral Abutment	Cohesive		PDA/ CAPWAP and Wave Equation	
		2	Integral Abutment	Cohesive		Wave Equation	Yes

_				
_				
—				
_				
_				

- A. Follow the geotechnical design and construction steps to implement Iowa LRFD Pile Design with Modified Iowa DOT Formula construction control.
- B. Select a resistance factor to estimate the contract pile length, L.
- C. Estimate the target nominal pile driving resistance, R_{ndr-T} .

Step 4. Nominal Pile Resistance							
Soil Stratum	Soil Description	Stratum Thickness	Average SPT N Value	Estimated Nominal Resistance for Friction Pile	Cumulative Nominal Friction Resistance at Bottom of Layer	Estimated Nominal Resistance for End Bearing	
		(ft)	(blows/ft)	(kips/ft)	(kips)	(kips)	
1	Soft to Stiff Silty Clay	5	4	1.4	7.0		
2	Fine Sand	20	16	2.4	55.0		
2	Medium Sand	40	20	2.8	167.0	32	

Iowa Department								
	Resistance Factor (b)							
Co	hesive		Mixed	Non- Cohesive				
ф	ϕ_{eod}	ϕ_{setup}	φ	Φ 30				
0.60	-	-	0.60	0.50				
0.65	-	-	0.65	0.55				
Ч Ц				into a				

EXAMPLE 1 Step 6. Required Nominal Resistance States of the required nominal pile resistance is: $R_{n} = \frac{\sum \eta \gamma Q + \gamma_{DD} DD}{\varphi} = \frac{54 + 0}{0.50} = 108 \text{ kips/pile}$ where: $\sum \eta \gamma Q = \gamma Q = 54 \text{ kips} \text{ (Step 3)}$ $\gamma_{DD} DD = 0 \qquad (\text{no downdrag})$ $\varphi = 0.50 \qquad (\text{Step 5})$

$\begin{array}{|c|c|c|c|c|c|c|c|} \hline \textbf{box Department} & \textbf{Step 7. Estimate Contract Pile Length} \\ \hline D_0 = 0 \ ft, R_{n-580} = 0 \\ D_1 = 5 \ ft, R_{n-581} = R_{n-580} + (1.4 \ \text{klf})(5') = 7.0 \ \text{kips} \\ D_2 = 5 + 20 = 25 \ ft, R_{n-582} = R_{n-581} + (2.4 \ \text{klf})(20') \\ = 7.0 + 48.0 = 55.0 \ \text{kips} \\ \hline \textbf{End bearing in Layer 3} = 32.0 \ \text{kips}, \\ R_{n-583} = R_{n-582} + 32.0 = 87.0 \ \text{kips} \\ \hline \textbf{Required additional length in Layer 3} = (108.0 - 87.0)/2.8 = 7.5', \ \text{say 8'} \\ \end{array}$

 $D_4 = 25 + 8 = 33$ feet, $R_{n,BB4} = R_{n,BB3} + (2.8 \text{ kips/ft}) (8 \text{ ft}) = 87.0 + 22.4 = 109.4 \text{ kips} > 108 \text{ kips}$ L = 33 + 2 + 1 = 36 feet Round pile length to nearest 5' increment, $\therefore L=35'$ [BDM 6.2.4.1]

Step 7. Estimate Pile Length

OK

Check resistance factor: % non-cohesive soil = [(32-5)/32] (100) = 84% > 70%

Structural service load limit = 20 tons for timber pile, and a driving limit = 40 tons [IDOT SS 2501.03, O, 2, c]

Minimum Epergy Requ						
Pile Length	Wood Pile	Concrete Pile				
(ft.)		10" to 14"				
	(Maximum Energy Al				
Pile Length	Wood Pile	Concrete Pile				
(ft.)		12" to 14"				
25' or less	24	32				
26' to 40'	$\rightarrow 24$	32				
41' to 50' 51' to 65'	33 (a)	32 (a)				
2.000 1175						

Step 12. Construction Observation

Observe construction, record driven resistance and resolve any construction issues

• Record hammer stroke and number of blows

$$R_{ndr} = \left(\frac{12E}{S+0.1}\right) \left(\frac{W}{W+M}\right)$$

where:

- R_{ndr} = nominal pile driving resistance, in tons
- W = weight of ram, in tons (include consideration for hammer efficiency) M = weight of pile, drive cap (helmet, cushion, striker plate and pile
- inserts if used), drive anvil and follower (if applicable), in tons
- E = W x H = energy per blow, in foot-tons
- H = Hammer stroke, in feet
- S = average pile penetration, in inches per blow, for the last 10 blows 12 = conversion factor for feet to inches

Iowa Department of Transportation Office of Bridges & Structures

Track 2, Example 2

Wrap-up

- Blue Book unit nominal resistance
- Resistance factor = f (Limit State, soil category, & construction control)
- Contract pile length, L = 35 feet
- Construction Control: Modified Iowa DOT Formula
- Resistance factor at EOD = 0.35
- Target driving resistance = 77 tons at EOD

- A. Follow the geotechnical design and construction steps to implement Iowa LRFD Pile Design with Modified Iowa DOT/ENR Formula construction control.
- B. Select a resistance factor to estimate the contract pile length, L.
- C. Estimate the target nominal pile driving resistance, R_{ndr-T} .

_					
_					

- A. Follow the geotechnical design and construction steps to implement Iowa LRFD Pile Design.
- B. Select a resistance factor to estimate the contract pile length, L.
- C. Estimate the target nominal pile driving resistance, R_{ndr-T} .
- D. Determine the pile setup factor for cohesive soil.

	for any Department of Transaction Track 1
WI	nere are we going?
Desi	an Step
1	Preliminary Design Engineer: Develop bridge situation plan (or TS&L, Type, Size, and Location) (1)
2	Soils Design Engineer: Develop soils package, including borings & foundation recommendations ⁽¹⁾
3	Final Design Engineer: Determine pile arrangement, pile loads, and other design requirements (1)
4	Estimate nominal geotechnical resistance per foot of pile embedment
5	Select resistance factor & estimate pile length, based on soil profile & construction control
6	Calculate required nominal pile resistance, Rn
7	Estimate contract pile length, L
8	Estimate target nominal pile driving resistance, R _{ndr-T}
9	Prepare CADD note for bridge plans
10	Check design (2)
Cons	struction Step
11	Prepare bearing graph
12	Observe construction, record driven resistance, and resolve any construction issues
Note	s: (1) These steps determine the basic information for geotechnical pile design and will vary depending on bridge project and office practice.
	(2) Checking will vary depending on bridge project and office practice.

Soils Design Engineer
Develop foundation recommendations• Friction pile: tip out in firm glacial clay
• Normal driving resistance• Structural Resistance Level-1, SRL-1 (driving
analysis not required by Office of Construction
during design) [BDM 6.2.6.1]

• No special site considerations for stability, settlement, or lateral movement

Step 4 Nominal Pile Resistance							
Soil Stratum	Soil Description		Stratum Thickness (ft)	Average SPT N Value	Estimated Unit Nominal Resistance for Friction Pile (kins/ft)		
1	So	ft Silty Clay	6	4	0.8		
2	5	Silty Sand	9	6	1.2		
ЗA	Firm	within 30 feet of natural ground elevation	8	11	2.8		
ЗB	Glacial Clay	more than 30 feet below natural ground elevation	65	12	3.2		

Resistance Factors for DESIGN of Single Pile in Axial Compression (Contract Length)										
S (c)	Construct	tion Con	trol (fie	ld verifica	ation) (a)		Resi	stance I	actor (b)	
Analysi	Driving C Bas	Criteria is	MAP	Retap Static		Cohesive			Mixed	Non- Cohesive
Theoretical	lowa DOT ENR Formula	WEAP	PDA/CAF	3-Days After EOD	ф	φ_{eod}	φ_{setup}	ф	ф	
	Yes	-	-	-	-	0.60	-	-	0.60	0.50
lowa			-	-	-	0.65	-	-	0.65	0.55
Blue		× (d)		-	-	0.70 ^(e)	-	-	0.70	0.60
Book	-	res (a)	res	Yes	-	0.80	-	-	0.70	0.60
			-	-	Yes	0.80	-	-	0.80	0.80
Vets: 0.80 - - 0.80 0.80 (a) Determine the construction control that will be specified on the Plans to achieve the Target Nominal Driving Resistance. (b) Resistance factors presented in Table E1 are for rednamal pile groups (minimum of 4 pile). (c) Use BDM Article 6.2.7 to estimate the theoretical nominal pile resistance, based on the lowa Blue Book. (d) Use the lowa Blue Book scill ingurproducts to complete WEAP analyses. (e) Use the for all Ble Book scill ingurproducts to complete WEAP analyses. (e) Setup effect has been included when WEAP is used to establish driving criteria and CAPWAP is used as a construction control.										

	Jowa Department of Transportation Office of Biologie A Biosenson Step 5. Resistance Factor							
Re	sistance Factors for DESIGN of Single Pile in Axial Compression (Contract Length) Resistance Factor ^(b)							
	Cohesive			Mixed	Non- Cohesive			
	Φ	φ_{eod}	Φ_{setup}	φ	φ			
	0.60	-	-	0.60	0.50			
	0.65	-	-	0.65	0.55			
l				0.70	0.00			

Step 5 Resistance Factor Select resistance factor to estimate pile length $\varphi = 0.65$ for cohesive soil * $\varphi = 0.65$ for mixed soil * $\varphi = 0.55$ for non-cohesive soil * * average over full depth of estimated pile penetration > 70% of pile embedment in cohesive soil $\therefore \varphi = 0.65$

	Soil Classification Method				
Generalized Soil Category	AASHTO	USDA BDM 6.2. Textural Resis		BDM 6.2.7 Geotechnical Resistance Chart	
				Very soft silty clay	
	A-4, A-5, A-6 and A-7	Clay Silty clay loam Silt Clay loam Silt loam Loam	Loess	Soft silty clay	
				Stiff silty clay	
				Firm silty clay	
				Stiff silt	
e ve				Stiff sandy clay	
ŝ			L Clay	Firm silty glacial clay	
ř.				Firm clay (gumbotil)	
ŏ				Firm glacial clay	
				Firm sandy glacial clay	
			Cia:	Firm-very firm glacial clay	
		Sandy clay	ala I	Very firm glacial clay	
			0	Very firm sandy glacial clay	
				Cohesive or glacial material	
			s	Stiff sandy silt	
e/		Sandy clay	es	Silty sand	
Si		loam	2	Clayey sand	
he	A-1, A-2 and A-	Candulana	ō	Fine sand	
8	3	Sanuy Ioam	É	Coarse sand	
Ś	-	Loamy sand	vin	Gravely sand	
Nor		Sand	Sand Sand	Granular material (N>40)	

Step 6 Required Nominal Resistance

The required nominal pile resistance is:

$$\begin{split} \mathsf{R}_{\mathsf{n}} = & \frac{\sum \eta \gamma \mathsf{Q} + \gamma_{\mathsf{DD}} \mathsf{DD}}{\phi} = \frac{128 + 0}{0.65} = 197 \text{ kips/pile} \\ \text{where:} \quad & \sum \eta \gamma \mathsf{Q} = \gamma \mathsf{Q} = 128 \text{kips} \text{ (Step3)} \\ & \gamma_{\mathsf{DD}} \mathsf{DD} = 0 \qquad (\text{no downdrag}) \\ & \phi = 0.65 \qquad (\text{Step 5}) \end{split}$$

Step 7 Estimate pile length

$$\begin{split} \underline{\text{Estimate contract pile length, L}} \\ D_0 &= 0 \text{ ft, } R_{n-BB0} = 0 \\ D_1 &= 6 \text{ ft, } R_{n-BB1} = R_{n-BB0} + (0.8 \text{ klf})(6') = 4.8 \text{ kips} \\ D_2 &= 6 + 9 = 15 \text{ ft, } R_{n-BB2} = R_{n-BB1} + (1.2 \text{ klf})(9') \\ &= 4.8 + 10.8 = 15.6 \text{ kips} \\ D_3 &= 15 + 8 = 23 \text{ ft, } R_{n-BB3} = R_{n-BB2} + (2.8 \text{ klf})(8') \\ &= 15.6 + 22.4 = 38.0 \text{ kips} \\ D_4 &= 23 + 65 = 88 \text{ ft, } R_{n-BB4} = R_{n-BB3} + (3.2 \text{ klf})(65') \\ &= 38.0 + 208.0 = 246.0 \text{ kips} \end{split}$$

Iowa Department of Transportation Office of Bridges & Structures	Step	8. Target N	ominal Drivi	ing Resistance
Resistance Factors for CONSTRUCTION CONTROL				
C	Cohesiv	e	Mixed	Non- Cohesive
Φ	φ _{eod}	Φ_{setup}	φ	φ
0.55 ^(f)	-	-	0.55 ^(f)	0.50 ^(f)
-	0.65	0.20	0.65	0.55
0.70	-	-	0.05	0.55
_	0.75	0.40		

Inva Department of Transportations Step 8 Target nominal driving resistance

Estimate target nominal pile driving resistance, R_{ndr-T}

 $\varphi_{\text{EOD}} = 0.65$ for cohesive soil * $\varphi_{\text{SETUP}} = 0.20$ for cohesive soil *

 $\varphi = 0.65$ for mixed soil *

 $\varphi = 0.55$ for non-cohesive soil *

* average over full depth of estimated pile penetration

Determine R_n at end of drive by scaling-back setup gain, and then adjust retaps to account for setup.

 $\Sigma \eta \gamma Q + g_{DD}DD \le \varphi R_n$ where $\eta = 1.0 = \text{load modifier [BDM 6.2.3.1]}$

Inva Department of Transportations Step 8 Target nominal driving resistance

```
\begin{split} \text{Let } \textbf{R}_{n} &= \textbf{R}_{T} = \text{ nominal pile resistance at time T (days) after EOD.} \\ \textbf{R}_{EOD} &\geq \frac{\sum \eta \gamma \textbf{Q} + \gamma_{DD} \text{DD}}{\phi_{EOD} + \phi_{SETUP} \left( \textbf{F}_{SETUP} - 1 \right)} \\ \text{where: } \sum \eta \gamma \textbf{Q} = \gamma \textbf{Q} = 128 \text{ kips, (Step 3)} \\ \gamma_{DD} \text{DD} = 0 \text{ (no downdrag)} \\ \textbf{F}_{SETUP} &= \text{ Setup Ratio } = \textbf{R}_{T} / \textbf{R}_{EOD} \end{split}
```


Every Department Step 8 Target nominal driving resistance We delete A tension. Every delete A tension. Read-T = Read $\begin{aligned} & \sum_{ndr-T} = R_{EOD} \\ & \leq \frac{\sum_{ndr} + \gamma_{DD} DD}{\varphi_{TAR}} \\ & = \frac{\sum_{ndr} + \gamma_{DD} DD}{\varphi_{COD}} \\ & = \frac{\sum_{ndr} + \gamma_{DD} DD}{\varphi_{COD}} \\ & = \frac{128 + 0}{(0.65) + (0.2)(1.61 - 1)} = \frac{128}{0.77} \\ & = 166 \text{ kips/pile = 83 tons/pile} \end{aligned}$

Was Department of Transportation Step 8 Target nominal driving resistance

Retap target nominal driving resistance:

 $R_{ndr-T (retap)} = minimum [R_{EOD} \times F_{setup} \text{ or } R_n (IBB)]$

 $\begin{array}{l} R_{ndr.T~(1\text{-}day)} = smaller \ of \ [166 \times 1.48 = 246 \ kips \ or \ 197 \ kips] = 99 \ tons \\ R_{ndr.T~(3\text{-}day)} = smaller \ of \ [166 \times 1.55 = 257 \ kips \ or \ 197 \ kips] = 99 \ tons \\ R_{ndr.T~(7\text{-}day)} = smaller \ of \ [166 \times 1.61 = 267 \ kips \ or \ 197 \ kips] = 99 \ tons \end{array}$

Thus, target nominal driving resistance = 99 tons/pile after EOD

Step 12 Construction observation

Observe construction, record driven resistance and resolve any construction issues

- Record hammer stroke and number of blows
- Use the LRFD driving graph to determine driven resistance at EOD
- If resistance at EOD is less than the target, retap pile 24 hours after EOD

Track 1, Example 1

Wrap-up

- Blue Book unit nominal resistance
- Resistance factor = f (Limit State, soil category, & construction control)
- Contract pile length, L = 75 feet
- Construction Control: WEAP analysis
- Resistance factor at EOD = 0.77
- Target driving resistance = 83 tons at EOD
- Pile retap = 99 tons at any retap after EOD

- A. Recognize the different design and construction control procedures of Track 1 and Track 2.
- B. Compare the different outcomes from Track 1 and Track 2
- C. Recognize the advantages of using WEAP as a construction control method

Example 1

Integral Abutment H-Pile & Cohesive Soil with Setup Construction Controls: WEAP versus Modified Iowa ENR

Iowa Department of Transportation Office of Bridges & Structures

Step 1 - Situation Plan

- 120 ft, single-span, prestressed concrete beam superstructure
- Zero skew
- Integral abutments
- Pile foundations, no prebored holes (because the bridge length is less than 130 ft) (BDM 6.5.1.1.1)
- Bottom of abutment footing elevation 433 ft

• No need for lateral load or special analysis

Iowa Do of Tran Office of Bri	epartment sportation lges & Structures	Step 4 N	Vominal	Pile R	esistance
Soil Stratum	Soil Description		Stratum Thickness (ft)	Average SPT N Value	Estimated Unit Nominal Resistance for Friction Pile (kins/ft)
1	Soft Silty Clay		6	4	0.8
2	Silty Sand		9	6	1.2
ЗA	Firm	within 30 feet of natural ground elevation	8	11	2.8
3B	Glacial Clay	more than 30 feet below natural ground elevation	65	12	3.2

of Transportation Office of Bridges & Structures	Step 9 CADD Notes
Design Notes	
Track 1: WEAP	Track 2: ENR
THE CONTRACT LENGTH OF 75 FEET FOR THE WEST ABUTMENT PILES IS BASED ON A COHESIVE SOIL CLASSIFICATION, A TOTAL FACTORED AXIAL LOAD PER PILE (P _U) OF 128 KIPS, AND A GEOTECHNICAL RESISTANCE FACTOR (PHI) OF 0.65 . THE NOMINAL AXIAL BEARING RESISTANCE FOR CONSTRUCTION CONTROL WAS DETERMINED FROM A COHESIVE SOIL CLASSIFICATION AND A GEOTECHNICAL RESISTANCE FACTOR (PHI) OF 0.77 .	THE CONTRACT LENGTH OF 80 FEET FOR THE WEST ABUTMENT PILES IS BASED ON A COHESIVE SOIL CLASSIFICATION, A TOTAL FACTORED AXIAL LOAD PER PILE (P _U) OF 128 KIPS, AND A GEOTECHNICAL RESISTANCE FACTOR (PHI) OF 0.60. THE NOMINAL AXIAL BEARING RESISTANCE FOR CONSTRUCTION CONTROL WAS DETERMINED FROM A COHESIVE SOIL CLASSIFICATION AND A GEOTECHNICAL RESISTANCE FACTOR (PHI) OF 0.55.

Iowa Department of Transportation Office of Bridges & Structures	Step 9 CADD Notes
Driving Notes	
Track 1: WEAP	Track 2: ENR
THE REQUIRED NOMINAL AXIAL	THE REQUIRED NOMINAL AXIAL
BEARING RESISTANCE FOR WEST	BEARING RESISTANCE FOR WEST
ABUTMENT PILES IS 166 KIPS AT END	ABUTMENT PILES IS 233 KIPS AT END
OF DRIVE (EOD). IF RETAPS ARE	OF DRIVE (EOD). IF RETAPS ARE
NECESSARY TO ACHIEVE BEARING,	NECESSARY TO ACHIEVE BEARING,
THE REQUIRED NOMINAL AXIAL	THE REQUIRED NOMINAL AXIAL
BEARING RESISTANCE IS 197 KIPS.	BEARING RESISTANCE IS 233 KIPS.
THE PILE CONTRACT LENGTH SHALL	THE PILE CONTRACT LENGTH SHALL
BE DRIVEN AS PER PLAN UNLESS	BE DRIVEN AS PER PLAN UNLESS
PILES REACH REFUSAL.	PILES REACH REPUSAL.
DEQUIDES A WEAD ANALVSIS AND	PEOLIDES & MODIFIED IOWA DOT
REQUIRES A WEAF ANAL 1515 AND REARING CRAPH	FORMULA
BEARING GRAI II.	FORMULA.

BEGIN CONSTRUCTION PHASE		
Track 1: WEAP	Track 2: ENR	
 Perform WEAP analysis Prepare bearing graph Observe construction Record hammer blow counts Determine driving resistance from bearing graph 	 Check minimum energy requirement Observe construction Record hammer blow counts Determine driving resistance from modified lowa ENR formula 	

Iowa Department of Transportation Office of Bridges & Structures	ep 12 Observe Constructio
Track 1: WEAP At the EOD, hammer str	Track 2: ENR roke = 7.5 ft and driving resistance =
<u>30 blo</u>	ws/ft are recorded.
 Based on the bearing graph, R_{ndr} = 88 tons = 176 kips, which is larger than R_{ndr-T} = 166 kips. Hence, the pile performance is accepted. 	$ \begin{array}{ll} \bullet & Using the modified ENR formula: \\ R_{ndr} = \frac{12E}{s+0.1} \times \frac{W}{W+M} \\ W = 2.007 \ tons \times 0.80 = 1.606 \ tons \\ M = 2.28+0.375+0.6 = 3.26 \ tons \\ E = WH = 12.045 \ ft-tons \\ s = 12 \ in/30 \ blows = 0.4 \ in/blow \\ R_{ndr} = \frac{12 \times 12.045}{0.4+0.1} \times \frac{1.606}{1.606+3.26} \times 2 \\ R_{ndr} = 191 \ kips \leq R_{ndr}-T = 233 \ kips. \end{array} $
	Hence, the pile performance is not accepted.

Office of Bridges & Structures	ep 12 Observe Construction
Track 1: WEAP	Track 2: ENR
At the 1-day retap, ha	ammer stroke = 8.5 ft and driving
resistance =	40 blows/ft are recorded.
 Based on the bearing graph, R_{ndr} = 114 tons = 228 kips, which is higher than R_{ndr-T} = 197 kips. Again, the pile performance is accepted. 	$\label{eq:result} \begin{array}{ l l l l l l l l l l l l l l l l l l l$

Summary of comparison	
Track 1: WEAP	Track 2: ENR
 9 HP 10×57 steel piles Total contract length = 675 ft R_n/pile = 197 kips R_{ndr-T} (EOD) = 166 kips R_{ndr-T} (Retap) = 197 kips Pile performance is likely to be accepted at EOD Lower chances of pile retaps 	 9 HP 10×57 steel piles Total contract length = 720 ft R_n/pile = 213 kips R_{ndr-T} (EOD) = 233 kips R_{ndr-T} (Retap) = 233 kips Relatively, pile performance is less likely to be accepted at EOD Higher chances of pile retaps

- A. Recognize the different design and construction control procedures of Track 1 and Track 2.
- B. Compare the different outcomes from Track 1 and Track 2
- C. Recognize the advantages of using WEAP as a construction control method

- A. Follow the geotechnical design and construction steps to implement Iowa LRFD Pile Design.
- B. Select a resistance factor to estimate the contract pile length, L.
- C. Estimate the target nominal pile driving resistance, R_{ndr-T} .
- D. Describe what is required for planned retaps.

	wa Department Transportation lice of Bridges & Structures	Step	o 4 Nor	ninal P	ile Resis	stance
Soil Stratum	Soil Description	Stratum Thickness	Average SPT N Value	Estimated Nominal Resistance for Friction Pile	Cumulative Nominal Friction Resistance at Bottom of Layer	Estimated Nominal Resistance for End Bearing
		(ft)	(blows/ft)	(kips/ft)	(kips)	(ksi)
1	Topsoil	3 (prebore)				
2A	Firm glacial clay	7 (prebore)				
2B	Firm glacial clay	20 (below prebore)	11	2.8	56	
2	Very firm glacial clay	50	25	4.0	256	2.0

_
 _
 _
 -
 -
-

<u> </u>		013101	DESIG	N of Sing	gle Pile i	n Axial C	ompre	ssion (Contract	(Length
ě	Construct	ion Con	trol (fie	ld verifica	ation) ^(a)		Resi	stance I	Factor ^(b)	
l Analysi	Driving C Basi	riteria s	MAP	Retap Test	Static	Co	hesive		Mixed	Non- Cohesive
Theoretical	lowa DOT ENR Formula	WEAP	PDA/CAF	3-Days After EOD	Load Test	ф	φ_{eod}	φ_{setup}	ф	ф
	Yes	-	-	-	-	0.60	-	-	0.60	0.50
Iowa			-	-	-	0.65	-	-	0.65	0.55
Blue		V== (d)	Vee	-	-	0.70 ^(e)	-	-	0.70	0.60
Book	-	res (=)	res	Yes	-	0.80	-	-	0.70	0.60
			-	-	Yes	0.80	-	-	0.80	0.80

lowa of Tr	a Department ransportation (Bridges & Structures		Step	5. Resis	stance Fa	ctor
Resistanc	e Factors for DE	ESIGN of S	Single Pile i	n Axial Compr	ression (Contract	Length)
		Resi	stance l	Factor ^(b)		
	Co	hesive		Mixed	Non- Cohesive	
	φ	ϕ_{eod}	ϕ_{setup}	φ	φ	
	0.60	-	-	0.60	0.50	
	0.65	-	-	0.65	0.55	
1	0,70 (0)			0.70	0.00	l

EXAMPLE 1 Step 6 Required Nominal Resistance States $R_n = \frac{\sum \eta \gamma Q + \gamma_{DD} DD}{\varphi} = \frac{128.6 + 0}{0.65} = 197.8 \text{ kips/pile}$ where: $\sum \eta \gamma Q = \gamma Q = 128.6 \text{ kips} \text{ (Step3)}$ $\gamma_{DD} DD = 0$ (no downdrag) $\varphi = 0.65$ (Step 5)

	Resistance Factor ^(b)						
	Cohesiv	e	Mixed	Non- Cohesive			
φ	φ _{eod}	ϕ_{setup}	φ	φ			
0.55 ^(f)	-	-	0.55 ^(f)	0.50 ^(f)			
-	0.65	0.20	0.65	0.55			
0.70	-	-	0.65	0.55			
	0.75	0.40	0.70	0.70			

Step 8 Target nominal driving resistance

 ϕ = 0.70 for cohesive soil, with retap test 3 days after EOD

Determine the nominal geotechnical bearing resistance per pile at 3-day retap.

$$R_n = \frac{128.6}{0.70} = 183.7 \text{ kips}$$

The average SPT N-value over the estimated pile embedment length is needed to use the setup factor chart.

 $N_a = \frac{(20)(11) + (27)(25)}{(20 + 27)} = 19$

We be a Department For a property of the second state of the sec

Step 10 Check the design

• Independent check of the bridge design, when the final plans are complete.

END DESIGN PHASE

Step <u>12</u> Construction observation

Observe construction, record driven resistance and resolve any construction issues

- Record hammer stroke and number of blows
- Use the LRFD driving graph to determine driven resistance at EOD
- If resistance at EOD is less than the target resistance, retap pile at 3 days after EOD to verify its performance

Iowa Department of Transportation Office of Bridges & Structures

Track 3, Example 2

Wrap-up

- Blue Book unit nominal resistance
- Resistance factor = f (Limit State, soil category, & construction control)
- Contract pile length, L = 60 feet
- Construction Control: WEAP analysis with 3-day planned retap
- Resistance factor at 7-days after EOD = 0.70
- Target nominal driving resistance = 59 tons at EOD
- Pile setup factor = 1.52 at 3-days after EOD
- Pile retap = 89 tons at 3-days

- A. Follow the geotechnical design and construction steps to implement Iowa LRFD Pile Design.
- B. Select a resistance factor to estimate the contract pile length, L.
- C. Estimate the target nominal pile driving resistance, R_{ndr-T} .
- D. Describe how planned retaps are accounted for.

	Steel H	Timber	Prestressed Concrete	Steel Pipe Concrete Fil
Integral Abutment	*	*	Do not use.	Do not use.
Stub Abutment	*			
Frame Pier				
T-pier	*			
Pile Bent	*	* Temp	*	*

lowa De of Trans Office of Brid	epartment sportation ges & Structures	Structural: Steel H
	P _n	SRL-1, SRL-2, & SRL-3, BDM
	P _{n integral}	\leq SLR-2, BDM
	V _n	18 kips plus battered pile component, BDM
	φ	AASHTO
		·
	Strength Lim	it State

lowa Depa of Transpo Office of Bridges	artment ortation & Structures	Geotechnical: All Pile Ty	pes
	Resistance f and construe	actor varies with soil classification control.	
	ϕ_{bearing}	BDM Table	
\bigcirc	ϕ_{uplift}	BDM Table	
	R _{n end}	BDM Table	
\square	R _{n friction}	BDM Table	
\cup			
	Strength Lir	nit State	

Summary Table at the Strength Limit State for Pile Types ~ K. Dunker ~ 15 October 2012

Factor	Steel H-pile	Timber pile	Prestressed concrete pile	Concrete-filled pipe pile
Structural load factors, Y	AASHTO 3.4.1	AASHTO 3.4.1	AASHTO 3.4.1	AASHTO 3.4.1
Structural load factor for	BDM 6.2.4.3	BDM 6.2.4.3	BDM 6.2.4.3	BDM 6.2.4.3
downdrag, Y _{DD}	$\Upsilon_{DD} = 1.0$	$\Upsilon_{DD} = 1.0$	$\Upsilon_{DD} = 1.0$	$\Upsilon_{DD} = 1.0$
Downdrag load, DD	BDM Table 6.2.7-2	BDM Table 6.2.7-2	BDM Table 6.2.7-2	BDM Table 6.2.7-2
Structural resistance	AASHTO 6.5.4.2	AASHTO 8.5.2.2	AASHTO 5.5.4.2.1	AASHTO 6.5.4.2
Structural hearing	RDM Table 6 6 4 2 1 1		RDM Table 6.6.4.2.1.2	RDM Table 6 6 4 2 1 3
resistance factor for nile	$\omega = 0.70$		$\omega = 0.75$	
bent, φ				
Structural bearing	BDM 6.2.6.1	BDM 6.2.6.3	AASHTO Section 5	AASHTO 6.9.5, 6.12.2.3
resistance, R _n	SRL-1, SRL-2, SRL-3	80 kips, 100 kips		
Structural bearing	BDM Tables 6.5.1.1.1-1	BDM 6.2.6.3		
resistance for integral	and 6.5.1.1.1-2	64 kips		
abutment, R _n				
Structural bearing	BDM Table 6.6.4.2.1.1 or		BDM Table 6.6.4.2.1.2 or	BDM Table 6.6.4.2.1.3 or
resistance for pile bent, R _n	P10L		P10L	P10L
Structural lateral	BDM 6.2.6.1	BDM 6.2.6.3		
resistance	18 kips	7 kips		
Geotechnical bearing	BDM Table 6.2.9-1	BDM Table 6.2.9-1	BDM Table 6.2.9-1	BDM Table 6.2.9-1
resistance factor, φ				
Geotechnical uplift	BDM Table 6.2.9-2	BDM Table 6.2.9-2	BDM Table 6.2.9-2	BDM Table 6.2.9-2
resistance factor, φ				
Geotechnical end	BDM Table 6.2.7-1	BDM Table 6.2.7-1	BDM Table 6.2.7-1	BDM Table 6.2.7-1
resistance, R _n				
Geotechnical friction	BDM Table 6.2.7-2 and	BDM Table 6.2.7-2 and	BDM Table 6.2.7-2 and	BDM Table 6.2.7-2 and
resistance, R _n	6.2.7 discussion	6.2.7 discussion	6.2.7 discussion	6.2.7 discussion
Driving resistance factor,	BDM Table 6.2.9-3	BDM Table 6.2.9-3	BDM Table 6.2.9-3	BDM Table 6.2.9-3
Φτακ	Fig 6.2.10	0.35 or 0.40	Fig 6.2.10	Fig 6.2.10